Orientation-Dependent Pinning and Homoclinic Snaking on a Planar Lattice
نویسندگان
چکیده
منابع مشابه
Orientation-Dependent Pinning and Homoclinic Snaking on a Planar Lattice
We study homoclinic snaking of one-dimensional, localized states on two-dimensional, bistable lattices via the method of exponential asymptotics. Within a narrow region of parameter space, fronts connecting the two stable states are pinned to the underlying lattice. Localized solutions are formed by matching two such stationary fronts back-to-back; depending on the orientation relative to the l...
متن کاملLocalized pinning states in closed containers: Homoclinic snaking without bistability.
Binary mixtures with a negative separation ratio are known to exhibit time-independent spatially localized convection when heated from below. Numerical continuation of such states in a closed two-dimensional container with experimental boundary conditions and parameter values reveals the presence of a pinning region in Rayleigh number with multiple stable localized states but no bistability bet...
متن کاملEckhaus instability and homoclinic snaking.
Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable, spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. This behavior is simplest to understand within the subcritical Swift-Hohenberg equation, but is also present in the subcritical regi...
متن کاملHomoclinic snaking: structure and stability.
The bistable Swift-Hohenberg equation exhibits multiple stable and unstable spatially localized states of arbitrary length in the vicinity of the Maxwell point between spatially homogeneous and periodic states. These states are organized in a characteristic snakes-and-ladders structure. The origin of this structure in one spatial dimension is reviewed, and the stability properties of the result...
متن کاملHomoclinic snaking in bounded domains.
Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of ho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Applied Dynamical Systems
سال: 2015
ISSN: 1536-0040
DOI: 10.1137/140966897