Orientation-Dependent Pinning and Homoclinic Snaking on a Planar Lattice

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orientation-Dependent Pinning and Homoclinic Snaking on a Planar Lattice

We study homoclinic snaking of one-dimensional, localized states on two-dimensional, bistable lattices via the method of exponential asymptotics. Within a narrow region of parameter space, fronts connecting the two stable states are pinned to the underlying lattice. Localized solutions are formed by matching two such stationary fronts back-to-back; depending on the orientation relative to the l...

متن کامل

Localized pinning states in closed containers: Homoclinic snaking without bistability.

Binary mixtures with a negative separation ratio are known to exhibit time-independent spatially localized convection when heated from below. Numerical continuation of such states in a closed two-dimensional container with experimental boundary conditions and parameter values reveals the presence of a pinning region in Rayleigh number with multiple stable localized states but no bistability bet...

متن کامل

Eckhaus instability and homoclinic snaking.

Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable, spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. This behavior is simplest to understand within the subcritical Swift-Hohenberg equation, but is also present in the subcritical regi...

متن کامل

Homoclinic snaking: structure and stability.

The bistable Swift-Hohenberg equation exhibits multiple stable and unstable spatially localized states of arbitrary length in the vicinity of the Maxwell point between spatially homogeneous and periodic states. These states are organized in a characteristic snakes-and-ladders structure. The origin of this structure in one spatial dimension is reviewed, and the stability properties of the result...

متن کامل

Homoclinic snaking in bounded domains.

Homoclinic snaking is a term used to describe the back and forth oscillation of a branch of time-independent spatially localized states in a bistable spatially reversible system as the localized structure grows in length by repeatedly adding rolls on either side. On the real line this process continues forever. In finite domains snaking terminates once the domain is filled but the details of ho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Applied Dynamical Systems

سال: 2015

ISSN: 1536-0040

DOI: 10.1137/140966897